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The bond lengths in 7-electron systems, determined by electron-phonon coupling, are calculated
by using a simple step-potential model. The geometry of a system is obtained by finding the self-
consistency between bond length and m-electron density in the middle of each bond. The model has
no free parameter and leads to a satisfactory description of unsaturated hydrocarbon chains and
rings and of defect states in trans-polyacetylene (kinks, polarons, bipolarons, and excitons). For
defect-free trans-polyacetylene, the calculated bond-length alternation of 0.08 A is in close agree-
ment with x-ray data and gives a band gap of 1.34 eV. Kinks in odd-numbered systems show
hyperbolic-tangent defect geometry and have an extent of 12-18 sites, depending on the charge.
Proceeding from negatively charged to neutral to positively charged kinks, the intergap state shifts
towards the conduction band. Polarons created from the ground state by adding or subtracting one
electron are bound and have an extent of 20—24 sites, depending on the charge. Bipolarons created
from the ground state by adding or subtracting two electrons are not bound and convert, by
electron-phonon coupling, to a kink (K*) and an antikink (K ) pair with equal charge. Excitons
created by excitation of the ground state are not bound and convert to a neutral K°K " pair.

I. INTRODUCTION

Soliton excitation in polyacetylene is the subject of a
great number of papers, based on Hiickel-type
approximations! ~’(for reviews, see Refs. 8 and 9). The
electron-lattice displacement is considered by minimizing
the sum of electronic energy and lattice-distortion ener-
gy. Electron correlation is neglected, but considered in
some papers based on the Hubbard-model approxima-
tion.!”1* A disadvantage of Hiickel-type approxima-
tions is their dependence on adjustable parameters due to
their basis set which is limited to one atomic orbital per
site.!* It is of interest to consider a model which solves
the one-electron Schrodinger equation in a strongly
simplified potential which does not depend on free pa-
rameters, and to compare its results with the known re-
sults of linear combination of atomic orbitals (LCAO) ap-
proximations. The model, by its simplicity, emphasizing
only the salient physical factors, should be useful for ex-
tensions to more complex systems.

The  electrons can be considered as electrons in a
three-dimensional potential V(x,y,z), appropriately con-
structed for known geometry by superimposing atomic
contributions. The molecular lattice is in the (x,y) plane.
The problem of solving the three-dimensional, one-
particle Schrodinger equation can be reduced to solving
the two-dimensional Schrodinger equation in an effective
potential V(x,y), or by solving the one-dimensional
Schrodinger equation in the effective potential ¥ (s),
where s is the coordinate along the bonds in the
chain.’*" 17 ¥ (x,y) and ¥ (s) are constructed from atomic
contributions obtained by considering electron-electron
interaction implicitly and taking into.account the effects
of side compression in decreasing distances between nu-
clei. The m-electron density distribution is calculated by
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summing the contribution of the occupied states. The
following two features of the models are important.

(a) The m-electron density in the middle of the bond, p,
and the corresponding experimental bond length d are re-
lated to each other: the m-electron charge in the bond at-
tracts the o-bonded nuclei by Coulomb forces and thus
reduces the carbon-carbon distance, while the Coulomb
repulsion of the carbon ions diminished by the shielding
of the o electrons counteracts this. The equilibrium den-
sity p is computed for the molecules with known bond
lengths. An empirical correlation function p(d) with its
inverse d (p) is obtained.'’

(b) To calculate the molecular geometry of a molecule
with M bonds of unknown lengths, an arbitrary
configuration of bond lengths d;,d,,...,d, is chosen
and the m-electron density in the middle of each bond
PP -+ Py 1S computed. d(p) gives a new
configuration of bond lengths, initiating a new cycle of an
iteration process that converges to self-consistency be-
tween densities p;,0,, ...,p) and bond lengths
di,dy,...,dy. 77"

This procedure leads to bond lengths and absorption
energies that are in good agreement with experimental
data,® e.g., to a band gap of 1.3 eV, a valence-band width
of 3.9 eV, and an ionization energy of 5.5 eV in the case
of the infinite polyene.'® In essence, the correlation of
bond length and r-electron density in the bond is used
rather than the energy-minimum method to find the
bond-length pattern. This approach is along the lines of
an early explanation of the bond-length alternation in po-
lyenes by the formation of a charge-density wave leading
to an instability in the chain of equal bonds.?! Before, it
was assumed that such a chain of equal bonds is the
stable configuration in long polyenes. The effect was later
discussed in the general case of a one-dimensional metal
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suffering a periodic lattice distortion.??

A simplified model can be considered in which the po-
tential troughs at the atoms are neglected for simplicity,
thereby accentuating the nature of the potential between
the atoms.?3 In the present paper the strongly idealized
potential consists of equidistant steps at levels determined
by an iteration process converging to self-consistency.
Considering the potential troughs at the atoms leads to
density maxima at the atoms but does not appreciably
change the band structure and the charge-density waves
on bonds or sites and hence does not change the molecu-
lar geometry. This is shown for butadiene (Fig. 1). The
m-electron densities [Figs. 1(b) and 1(d)] resulting from
the models in Figs. 1(a) and 1(c), respectively, are almost
identical [the “double bonds” C(1)==(C)(2) and C(3)=
C(4) are short and have high density; the ‘“single bond”
C(2)—C(3) is long and has low density], except that the
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FIG. 1. One-dimensional model of butadiene. (a) Exact one-
dimensional pseudopotential from the literature. The potential
is composed of atomic contributions. The potential between
atoms is lower for shorter distances. (b) Wave functions ¢, and
¥, of occupied states obtained by solving the Schrodinger equa-
tion for the potential in (a) and 7-electron density distribution p
of the four  electrons in ground state. Density maxima are at
the carbon atoms. Density between atoms is higher for shorter
distances. C(1)=C(2) and C(3)==C(4) are “double bonds,”
C(2)—C(3) is a “‘single bond.” (c) Simplified step potential used
in this paper. Potential steps are of length a. The termination
length a,=0.9a is fixed to zero potential. Potential between

- atoms is lower for shorter distance (see inset). Potential troughs
of carbon atoms are neglected. (d) Wave functions ¥, and ¢, of
occupied states obtained by solving the Schrodinger equation
for the potential in (c) and m-electron density distribution p of
the four 7 electrons in the ground state. High density at double
bonds C(1)=C(2) and C(3)=C(4), low density at single bond
C(2)—C(3). The density in the middle of a bond (dashed lines
inset) is a measure of the bond length. No density maxima are
at the carbon atoms.

7777

density maxima on the atoms are naturally not represent-
ed by the step-potential model. This justifies the simplify-
ing assumptions. These are further supported by pseudo-
potential theory.2*~26

In the present paper, solitonic excitations in polyace-
tylene are studied on the basis of the step-potential mod-
el, starting with short polyenes, polymethines, and annu-
lenes. The results essentially agree with those given in
previous work.!'~7?7 This is remarkable considering the
simplicity and transparency of the model avoiding adjust-
able parameters. Thus the model should be useful in
treating large m-electron systems and soliton dynamics.
Extensions of the model that include electron-electron
correlation explicitly can be possibly executed with
ease.?®

II. METHOD OF CALCULATION

The potentlal in the middle of the single bond and the
double bonds in butadiene [d =1.48 and 1.34 A®
Fig. 1(a)] and in the middle of the equal bonds in benzene
[d=a=1.40 A (Ref. 30)] taken from the one-
dimensional refined pseudopotential model®® is used to
define the levels in the step-potential model [Fig. 1(c) and
inset of Fig. 1(c); the unit of energy #*/2ma’=1.944 eV].
We find from Fig. 1(c), for the double bonds C(1)=C(2)
and C(3)=C(@4), d =0.957a and V = —0.98#%>/2ma?; for
the single bond C(2)—C@3), d=1.057a and
¥V =40.91%%/2ma> For the equal bonds in benzene,
d =a and V =0. V(d) is obtained by quadratic interpola-
tion:

V/(#/2ma?)=19.9(d /a —1)—68.3(d /a —1)* . (1)

The m-electron densities p in the middle of the bonds of
butadiene [Fig. 1(d) and inset of Fig. 1(d)] and benzene
calculated with the step-potential model are the follow-
ing: in butadiene, for double bonds C(1)=C(2) and
C(3)=C4), d =0.957a and p=1.503/a; in butadiene,
for a single bond C(2)—C(3), d =1.057a and p=0.533/a;
in benzene, for equal bonds, d =a and p=1/a. p(d) (Ref.
31) is obtained by quadratic interpolation:

pa=1.00—10.2(d /a —1)+35.0(d /a —1)* . )

From Egs. (1) and (2) (or from the p and V values given
above) we obtain V' (p) (the quadratic term turns out to be
zero),

V/(#/2ma*)=a(l—pa), a=1.95. (3)

The numerical procedure to solve the Schrédinger
equation with a potential of piecewise constant steps is
outlined in the Appendix. The iteration process is
sketched for butadiene and benzene [Fig. 2(a)]. Starting
with any configuration of bond lengths for a m-electron
system with unknown bond lengths (e.g., with equal bond
lengths for butadiene), then solving the Schrodinger equa-
tion (particle in a box in this case) and calculating the
m-electron density distribution, Eq. (3) gives a new
configuration of steps. Solving the Schrodinger equation
for this potential initiates a new cycle of the iteration.
The process is continued until convergence to self-
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FIG. 2. Iteration process for step-potential model. Step po-
tential V' vs pa, p density is in the middle of a bond. Depen-
dence sketched for geometry of butadiene (left) and for benzene
(right) with unknown step configuration. Curved line: p com-
puted for given geometry (given V). Straight line with slope a:
Eq. (3); a given by strength of electron-phonon coupling. Ar-
rows: course of iteration to consistency (circles).
(a) @ <2.6: convergence to bond-length alternation in case of
butadiene and convergence to equal bonds in case of benzene.
(b) @>2.6: convergence to bond-length alternation in butadiene
and benzene. The configuration of equal bonds in benzene is
unstable.

consistency. The desired molecular geometry follows
from the final configuration of steps by the inverse of Eq.
(1).

In the case of benzene, starting with bond alternation,
the procedure converges to equal bond lengths, demon-
strating self-consistency. This finding is not trivial; for a
coupling constant a> 2.6, sufficiently greater than the
value a=1.95, equal bonds in benzene would be unstable
and the iteration process would converge to bond alterna-
tion [Fig. 2(b)].

LCAO treatments with their particular assumptions
lead to bond-length alternation in polyacetylene but do
not lead unambiguously to bond equality in benzene since
a different choice of adjustable parameter values results
in bond-length alternation.®

III. RESULTS AND DISCUSSIONS

A. Polyenes: H(C—ChH

Polyenes are chains with an even number j =2n of car-
bon atoms. The smallest polyene is butadiene (n =2) dis-
cussed above. It has a bond-length alternation of
Ad=0.14 A where Ad is the difference of bond lengths
between the two adjacent bonds Ad=(—1){(d;—d,_,),
and d; is the bond length of the bond between sites i and
i +1. For the longer polyenes (Fig. 3 for n =15) the al-
ternation gets smaller, down to Ad =0.08 A in the mid-
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FIG. 3. Polyene: “"525“’"”. Case n=15. Number of C

atoms j =2n =30. (a) Energy spectrum. Energy difference be-
tween lowest unoccupied state and highest occupied state
AE=1.73 eV. (b) Step potential. (c) Wave functions
¥1—9;5 of occupied states. m-electron density distribution pa.
Dashed lines denote the middle of bonds. The charge-density

wave is over bonds. Single- and double-bond alternation
stronger at ends.
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dle of the molecule. There is a termination effect at the
ends of the molecule resulting in a stronger bond-length
alternation Ad =0.13 A similar to butadiene. The 7-
electron density distribution shows a charge-density wave
over the bonds [dashed lines in Fig. 3(c)]. The wave func-
tion of the highest occupied state [¢;5 in Fig. 3(c)] has
maxima and minima at the double bonds and therefore
this state is energetically more favorable as compared to
the lowest unoccupied state. Hence a gap [Fig. 3(a)] in
the energy spectrum appears.32

Q
i . H,C=C-(-C=C-)a—CH
B. Polymethines: L=g-c=¢ 2

Polymethines are chains with an odd number
j=2n+3 of carbon atoms. In contrast to polyenes,
where the m-electron density distribution is insensitive to
variations in the termination length a,, a change in a, has
a surprising effect for the polymethines (Fig. 4): Taking
a,=1.5a there are equal bonds (particle-in-a-box case) up
to n =11 with the charge-density wave over the sites.
For larger values of n the bond equality is found to be re-
stricted to the central region of the molecule. The bond-
length alternation is strong towards the ends of the chain,
since the m-electron density distribution changes to a
charge-density wave over the bonds. The relatively
abrupt transition with increasing » from bond equality to
bond alternation with kinklike topology is remarkable

ae = 0.9a

n=11
(j=25)

n=16
(j=35)

n=26
(j=55)

e
. H,C=C~(-C==C~)n—CH
FIG. 4. Polymethines: " H H H 2

7779

and is contrasted to the case a, =0.9a, where the kinklike
topology can be recognized even in small systems.>?
C. Annulenes

Annulenes are rings with an even number j of carbon
atoms. The Hiickel rule states that (4n +2)-annulenes
have no bond-length alternation whereas 4n-annulenes
have bond-length alternation.

It is well known that the Jahn-Teller effect causes a
spontaneous dimerization for 4n-membered ring systems
with any strength of electron-phonon coupling, whereas
(4n +2)-membered ring systems only dimerize for
sufficiently large electron-phonon coupling. In the case
of annulenes, benzene has equal bonds and large (4n +2)
annulenes must dimerize since polyenes dimerize and an
infinite polyene chain is not to be distinguished from an
infinite polyene ring. The maximum value n for a
(4n +2)-annulene to have equal bonds was calculated to
be between n =1 (Ref. 34) to n =7.% The SSH model
with appropriate parameter values gives the value n =3.°
The approach mentioned in the Introduction leading to
dimerization of polyenes'>!®! gives the value n >S5
without adjustable parameters.!” NMR experiments
show that the 14-annulene has a ring current whereas the
22-annulene has no ring current,’ suggesting n between 3
and 4. Our result is n =3 (Fig. 5). Note that this result
does not depend on adjustable parameters.

a. = 1.5a

. m-electron density distribution along molecule with j =2n +3 C atoms for three

cases n =11,16,26 and with two values of the termination lengths, @, =0.9a and a, =1.5a. Dashed vertical lines denote the middle of
each bond. Slashes denote C atoms. Case a,=1.5¢, n =11: the charge-density wave is over sites (equal bonds). Case a,=1.5a,
n =11: the charge-density wave is over sites (equal bonds). Cases a,=1.5a, n =16,26 and a,=0.9a, n =11,16,26: kinklike topolo-
gy. Charge-density wave over sites at the center of molecule (weak bond-length alternation) and charge-density wave over bonds at

ends of chain (strong bond-length alternation).
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FIG. 5. 4n- and (4n +2)-annulenes. Bond-length alternation
Ad=|d;—d;_,|; d; is the bond length between sites i and i + 1.
j is the number of C atoms. (j=4n)-annulenes (squares):
strong bond-length alternation for n =1; bond lengths converge
with increasing »n to an alternation Ad =0.08 A, ( Jj=4n +2)-
annulenes (triangles): bond equality for benzene and other
(4n +2)-annulenes up to n =3 (j = 14); weak bond-length alter-
nation at n =4 (j=18); Ad converges with increasing n to
Ad=0.08 A.

D. Polyacetylene

1. The ground state

We describe the ground state of polyacetylene as a
large even-numbered ring with cyclic boundary condi-
tions to avoid the termination effects mentioned above
(Secs. IIT A and IIIB). The ground state has a bond-
length alternation Ad=0.082 A and a band gap AE
=1.34 eV, in good agreement with experiments.®>’

2. Kinks

In an odd-numbered two bond-

length—alternation patterns

ring the

..—™C—C—=C—C—C—...
and
w.™C=C—C=C—C=—...

unite, forming a localized defect called a kink. The kink
creates an intergap state (energy spectrum in Fig. 6). The
corresponding wave function is well localized (wave func-
tion in Fig. 6 with vertical line at the center). This inter-
gap wave function is closely related to the topology of the
kink [deviation from mean bond length in Fig. 6,
i =integer (s/a) indicating site i]. There are two
different modes of a kink, weak and strong, the center of
the defect being shifted by one site.” This is schematical-
ly represented for a weak negative kink as

=

imC=C—C—C=C—...

a weak neutral kink as

...mC=C—C—C=C—...

and a weak positive kink as

...—c=c—g—~c=c~...
The wave function of the intergap state of the weak kink
has an antinode at the center of the defect (vertical line at
s/a=70). The deviation from the mean bond length
d;—a expresses the single- (double-) bond character of a

bond. The two equal bonds in the center of the defect
have more single-bond character than the bonds next to
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them.
The strong kink can be represented by mesomeric
structures as follows: for a strong negative kink,

& c

...=C—C—C=C—C—... o ...

0]

for strong neutral kink,

w.=C—C—C—C—C=... = -+ —C—C—=C—C—C—... s

and for strong positive kink,

®

G- C—C=C—Cm... & ..—C—C=C—C—C—..
The wave function of the intergap state of the strong kink
has a node at the center of the defect (vertical line at
s/a =69). Its envelope is shifted by one site compared to
the weak kink, while the phase is unchanged. The two
equal bonds in the center of the defect have more
double-bond character than the bonds next to them.

Weak and strong kinks are self-consistent solutions
describing two different stable states with the center of
the defect at adjacent sites. Thus the energy of a kink
moving along the chain is minimal for weak and strong
kinks, while intermediate states have higher energies.
Considering two adjacent bonds enclosing a particular
site / in the course of a kink passing over it, the single
bond gradually turns into a double bond (the adjacent
bond vice versa,) according to the change of the
m-electron density. The bond alternation Ad;
=(—1)(d;—d;_,) between the two adjacent bonds
proceeds from +0.058a to —0.058a. Hence the inter-
mediate state of a kink has to be self-consistent with the
constraint of the bond alternation Ad; fixed to a given
value between the value in the weak and the strong kink
enclosing the intermediate state. The transition state has
a little higher energy (less than 10~ 3 e¢V) than the two
stable states, indicating a nearly free translation of kinks
through the otherwise perfect lattice. This value is simi-
lar to the kink-pinning energy calculated within the SSH
model.!

The negative kink has two electrons, the neutral kink
has one electron, and the positive kink has no electrons in
this intergap state, which shifts towards the conduction-
band edge when these electrons are removed. This is due
to the increasing single-bond character in the range of the
defect. The squares of the corresponding wave functions
have the following envelopes [case of the weak negative
kink in Fig. 7(a)]:

negative kink: ~ sech?(x/8.5),
neutral kink: ~ sech?(x/9.25),

positive kink: ~ sech’(x /8.2) ,
where x =(s —s()/a and s, is the s value in the center of
the defect. The bond-length-alternation pattern shows
the topological consequences and can be approximated
by [case of the weak negative kink in Fig. 7(b)]

negative kink: Ad =0.058a tanh(x /8.0) ,
neutral kink: Ad =0.058a tanh(x /9.0) ,
positive kink: Ad =0.058a tanh(x /6.2) .



40 SOLITONS, POLARONS, AND EXCITONS IN POLYACETYLENE:. .. 7781

In the case of the neutral kink the lengths of the two
bonds in the center of the defect are equal to the mean
bond length. In the case of the negative kink the high
electron density of the intergap state at the bonds [circles
in Fig. 7(a)] leads to bonds with predominantly double-
bond character in the region of the defect (Fig. 6), localiz-
ing the defect more strongly than in the neutral kink.
Proceeding from the neutral to the positive kink, the
single-bond character in the range of the defect is in-
creased, reducing the extent of the defect more strongly

Weak negative kink
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than by proceeding from the neutral kink to the negative
kink.

3. Polarons

An electron is added to the ground state of polyace-
tylene; then the lowest state of the conducting band is oc-
cupied with one electron. Relaxation caused by
electron-phonon coupling reveals two intergap states
(negative polaron in Fig. 8). The lower state is very close
to the valence-band edge and filled with two electrons;
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FIG. 6. Kinks. Energy spectrum; band gap AE =1.34 eV. The charge of the kink is given by occupation of the intergap state:
negative kinks, filled intergap state (two electrons); neutral kinks, half-filled intergap state (one electron); positive kinks, empty inter-
gap state (no electron). In proceeding from the negative kink to the neutral kink to the positive kink, the intergap state shifts towards
the conduction band. The wave function of the intergap state is shown. The vertical line at the center of the defect marks the sym-
metry of the wave function. Weak kinks have an antinode at the center of defect (i =70), strong kinks a node (i =69). The deviation
from the mean bond length d; —a is plotted against 7, d; is the bond length between sites i and i + 1 and a the mean bond length. In
the case of negative (positive) kinks, the bonds in the region of the defect have predominantly double- (single-) bond character. In the
case of weak (strong) kinks, the bonds in the center of defect have more single- (double-) bond character than the bonds next to them.
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FIG. 7. Kink and polaron (Refs. 43 and 44). (a) Squares of wave functions of intergap states. Circles indicate values in middle of
bonds. Weak negative kink: alternating maxima and zeros at sites, envelope ~sech?(x /8.5); x =(s —s,)/a, so=s at the center of the
defect. Negative polaron, upper state: maxima (zeros) at bonds with predominantly single- (double-) bond character, envelope
~[sech(x /12.7—0.44)-+sech(x /12.7+0.44)]% the low-density values in the middle of bonds lie on the curve given by
~[sech(x /12.7—0.44)—sech(x /12.7+0.44)]%. Negative polaron lower state: maxima (zeros) at bonds with predominantly double-
(single-) bond character, envelope ~ [sech(x /14.1—0.44)+sech(x /14.1+0.44)]% the low-density values in the middle of bonds lie
on the curve given by ~[sech(x/14.1—0.44)—sech(x /14.1+0.44)]%.. (b) Bond-length—alternation pattern. Ad;=(—1){(d,—d,;_;).
Weak negative kink, Ad =0.058a tanh(x /8.0); negative polaron, Ad =0.058a [1—0.64 sech?(x /12)].
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FIG. 8. Polarons. Energy spectrum. Band gap AE=1.34 eV. Two intergap states. Negative polaron: lower state filled, upper-
state half-filled. Positive polaron: lower state half-filled, upper state empty. Wave functions of the upper and lower intergap states
are shown; the vertical ine at the center of the defect (i =69.5) marks the symmetry of the wave function. The lower state has a node
at the center of the defect, the upper state an antinode. Deviation from mean bond length (d; —a) vs i.
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Positive bipolaron
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FIG. 9. Bipolarons. Energy spectrum. Band gap AE =1.34 eV. Two nearly degenerate intergap states. Negative bipolaron: both
intergap states filled. Positive bipolaron: both intergap states empty. Wave functions of the upper and lower intergap states are
shown. Two localization centers are present. Deviation from mean bond length (d; —a) vs i. Note bond alternation outside defects,
inverse bond alternation in the central region, and occurrence of an equally charged kink and antikink.

the upper state is near the conduction-band edge and
filled with one electron. The wave functions of these two
states are well localized and the lower state is less local-
ized than the upper state (vertical line at s /a =69.5).

The squares of wave functions have the following en-
velopes [case of the negative polaron in Fig. 7(a)]: for the
upper state,

~[sech(x /12.7—0.44)+sech(x /12.7+0.44)}* ,
and for the lower state,

~[sech(x /14.1—0.44)+sech(x /14.14+0.44)] .

The square of the wave function of the lower state has
maxima in the double bonds and zeros in the single
bonds, whereas the square of the wave function of the
upper state has maxima in the single bonds and zeros in
the double bonds [circles in Fig. 7(a)]. The additional
electron occupying the upper intergap state accumulates
in the single bonds in the range of the defect and changes
them to a more double-bond character. This causes a
further charge-density increase in these bonds at the ex-
pense of charge density in the double bonds in the defect,
forming the lower intergap state (negative polaron in Fig.
8). Thus a negative polaron is created with a bond-
length—alternation pattern [case of the negative polaron
in Fig. 7(b)]:

Ad =0.058a[1—0.64 sech?(x /12)] .

If an electron is subtracted from the ground state of
polyactelyene, then the highest state of the valence band

Exciton
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FIG. 10. Exciton. Energy spectrum. Band gap AE=1.34
eV. Two nearly degenerate intergap states, both singly occu-
pied. Wave function of upper and lower intergap states are
shown; two localization centers are present. Deviation from
mean bond length, (d; —a) vs i. Note bond alternation outside
defects, inverse bond alternation in the central region, and oc-
currence of a neutral kink and neutral antikink.
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is occupied with one electron. Relaxation reveals two in-
tergap states (positive polaron in Fig. 8): the lower state
is near the valence-band edge and filled with one electron,
and the upper state is very close to the conduction-band
edge and empty. The wave functions of these two states
are well localized; the lower state is more localized than
the upper state (vertical line at s /a =69.5). The squares
of the wave functions have the envelopes, for the upper
state,

~[sech(x /15.7—0.44)+sech(x /15.7+0.44)]? ,
and for the lower state,
~[sech(x /10.5—0.44)+sech(x /10.5+0.44)]? .

The square of the wave function of the lower state has
maxima in the double bonds and zeros in the single
bonds, whereas the square of the wave function of the
upper state has maxima in the single bonds and zeros in
the double bonds (the same as in the case of the negative
polaron). The missing electron produces a hole in the
lower intergap state, which accumulates in the double
bonds in the range of the defect and changes them to
more single-bond character. This causes a further
charge-density decrease in these bonds at the expense of
the single bonds in the defect, forming the upper intergap
state. Thus a positive polaron is created which, com-
pared with the negative polaron, is more localized:

Ad =0.058a[1—0.76sech*(x /10)] .

4. Bipolarons

Two electrons are added to the ground state of po-
lyacetylene; then the lowest state of the conduction band
is occupied with two electrons. Relaxation reveals two
nearly degenerate filled intergap states (negative bipola-
ron in Fig. 9), and their wave functions have two localiza-
tion centers. The unbound bipolaron evolves into a well-
separated negative-kink —negative-antikink pair K K .
Two electrons are subtracted from the ground state of
polyacetylene; therefore the highest state of the valence
band is empty. Relaxation reveals two nearly degenerate
empty intergap states (positive bipolaron in Fig. 9), and
their wave functions have two localization centers. The
unbound bipolaron evolves into a well-separated
positive-kink —positive-antikink pair K YK *.

In the present approach the Coulomb repulsion of the
two equally charged localization centers is neglected,
which would favor the splitting of bipolarons.

5. Excitons

We excite the ground state of polyacetylene; then one
electron is removed from the highest state of the valence
band and enters the lowest state of the conduction band.
Relaxation reveals two intergap states (Fig. 10). Their
wave functions have two localization centers. Thus the
unbound exciton evolves into a well-separated neutral-
kink-neutral-antikink pair K°K ¥. An oppositely
charged pair KTK T is unstable and converts into the
neutral pair in the course of the iteration process.
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IV. CONCLUSIONS

We have computed the geometry and the electronic en-
ergy spectrum of molecules such as polyenes (even-
numbered chains), polymethines (odd-numbered chains)
and annulenes (even-numbered rings), and of defects in
polyacetylene such as kinks (negative, neutral, positive),
polarons and bipolarons (negative, positive), and excitons
(neutral), using a step-potential model for -electron sys-
tems. The results listed as follows essentially agree with
those given in previous work, which is remarkable con-
sidering the simplicity of the model.

(a) Equal bonds in (4n +2)-annulenes for n <4.°

(b) Bond-length alternation in polyenes, 4n-annulenes
for n > 1, and (4n +2)-annulenes for n >4.°

(c) Bond-length alternation in polyacetylene of
Ad=0.08 A and a band gap AE =1.34 eV.>%27%7

(d) sech?(x /I) shape of envelopes of squares of wave
functions of intergap states of kinks.!"?

(e) tanh(x /1) shape of bond-length alternation with an
extent 2/ =12 18 sites for kinks.!?

(f) [sech(x /I +B)+sech(x /I —f3)]* shape of envelopes
of squares of wave functions of intergap states of pola-
rons, B=0.44.3

(g) [1—asech?(x /I)] shape of bond-length alternation
with an extent 2/ =20-24 sites for polarons.*>

(h) Instability of bipolarons by separation into
KK £.35927
(i) Instability of excitons by separation into K °K ©,%38

Additionally, the model leads to a broken electron-hole
symmetry. Electron-hole symmetry in SSH models of po-
lyacetylene is rooted in the Hiickel-type approximation
with the following properties.! ~°

(i) Symmetry of valence and conduction bands.

(ii) Midgap state in the case of the kinks independent of
their charge.

(iii) Two symmetric intergap states near the band edges
in the case of polarons (i.e., the distance of the lower state
from the valence-band edge is the same as the distance of
the upper state from the conduction-band edge indepen-
dent of the charge).

(iv) Shape and extent of defect independent of its
charge.

In the present approximation the intergap state of the
kink is near the center of the gap, its position depending -
on charge. The intergap state shifts towards the
conduction-band edge as one proceeds from the negative
to the neutral to the positive kink. This is due to the in-
creased single-bond character in the range of the positive
kink causing an increased energy of the intergap state
which is localized in this range. The charged kinks are
more localized than the neutral kinks because their bonds
in the center of the defect deviate from the mean bond
character present in the neutral kink. Additionally, the
positive kink is more localized than the negative kink.

Similarly, the two intergap states of a polaron shift to-
wards the conduction band as one proceeds from the neg-
ative to the positive polaron, but the distances of both
states from the band edges are now small. In the case of
the negative polaron the lower state is closer to the
valence-band edge than the upper state from the
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conduction-band edge and the defect is weak and extend-
ed. In the case of the positive polaron, the lower state is
further away from the valence-band edge than the upper
state from the conduction-band edge and the defect is
strong and localized. Boudreaux et al.?’ report calcula-
tions using the Dewar-Thiel modified neglect of diatomic
overlap (MNDO) scheme, which also break the electron-
hole symmetry. MNDO calculations give the relative po-
sitions of the gap states rather well but overestimate the
electronic band gap. The intergap state of a kink is closer
to the valence-band edge for the negative kink and fur-
ther away for the positive kink, in accordance with our
findings. Due to the larger band gap within the MNDO
scheme, kinks and polarons are more localized.
Negative-charged kinks and polarons are more localized
compared to the positive-charged kinks and polarons; the
polarons have one intergap state, in contrast to our
findings.

The strongly idealized model presented in this paper
neglects all factors that are not of primary importance, as
demonstrated by comparison with more sophisticated
models. By its emphasis on the relevant factors the mod-
el is informative and useful for extensions to more com-
plex cases.
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APPENDIX: NUMERICAL PROCEDURE

The potential consists of N piecewise constant steps.
The wave amplitude and the corresponding derivative for
the wave function within step i between the discontinui-
ties x; and x; ;. are given by* (a) for €>§,,

¥, = A, sink,(x —X;)+B,; cosk;(x —X;) ,

%\I’i= A;k; cosk;(x —%;)— B;k; sink;(x —X;) ;

(b) for €< §;,
¥, = A, sinhk;(x —X;)+ B, coshk;(x —X;) ,
0

a\l',- = A;k; coshk;(x —X;)+ B;k; sinhk;(x —X;) ;

(c) for e=8§,,
v,=B,,
a

—Wy.=0 y
ax !
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where k;=1/€—3§; and k;=1/8, —¢€ are the dimension-
less wave vectors with energy e=E /#*/2ma? above and
below the potential 8, =V, /#*/2ma?, respectively. The
coefficients A4;,B; have to be determined solving an eigen-
value problem.*! [a=1.40A, [,=x,,,—x; and
X;=2X(x;+x;41).] The equation

Ri+l Ri

Qi+l Qi

with the following matrices, (a) for € > §;,

T

cos(k;l;)  (1/k;)sin(k;l;)
Li= | —k;sin(k;l,)  cos(k;l;) ’
(b) for e <9;,
cosh(k;l;) (1/k;)sinh(x;l;)
L= «; sinh(k;/;) cosh(k;l;) ’
(c) for e=8§,,
1
=0 1|

transfers the wave amplitude at the discontinuity x;,

R[E\I/,-A](xi)=‘l/,-(x,<) s

d d
Qt ax i l(xl) ax\pz(xt)’
over the step i.4?
The equation
Ry 11 T( R,
On+1 Liel Q,
with
a b
I(e)—i];IlL: c d

relates the wave amplitude at the left end of the first step
x; with the wave amplitude at the right end of the last

step Xy +1.
The eigenvalue problem

R,
0,

R,

I(e) 0,

=Al€)

with the cyclic boundary condition of the ring
Ry 4 R,
On+1 Q,
is solved with the eigenvalue A(e™)=1=1(a +d).

The eigenvalue problem
R, R,
9, 2,

T(e) =A(e)
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with the “end-to-end” boundary condition of the chain
Ry 1=R ;=0 is solved with the condition b (€”)=0 and
the eigenvalue A(e™)=d.

The coefficients 4", B/" for the mth wave function
with the energy €™ and valid within step i are given by (a)
for € >6;,

AP | —sin(Akm) (1/7kMcos(2kmL) | (R
B | ™ | cos(1kM)  (1/kMsin(ikm) | | |
(b) for €™ <§;,

CHRISTOPH KUHN

B™

sinh(3«[";)  (1/k]*)coshik]"l;)

cosh(4k7;) (1/k)sinh(1kl;)

R/"
o

’

(c) for €"=8
Al
B/"

is
0

R/™

This wave function is normalized and orthogonalized,

N xi '
> [ ereowr(xdx =5, .

i=1" "
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