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Abstract  

Conventional models use antisymmetrized configurations of molecular orbitals (MOs) expressed as linear combinations of 
atomic orbitals (LCAOs) to describe correlation effects. In the free electron (FE) model and beyond the antisymmetry condition 
is neglected. This leads to a strong simplification and to physical transparency in describing correlation effects by electron 
repulsion without losing the essence, determining spectroscopic properties. Examples are studied where the correlation effects 
in the ground state and in the excited state are not very different (strong absorption band in dyes and polyenes) and examples 
where this is not the case (first absorption band in porphyrin, which is diminished in intensity to a tenth by electron correlation, 
transition into the 2lAg state in polyenes, which is shifted below the l lBu state by electron correlation). The appropriate 
evaluation of the electron repulsion integral is crucial in quantitative approaches. The evaluation procedures in the FE approach 
and in conventional models are critically considered. The nearly free electron (NFE) model approach (numerical solution of 
1D Schr6dinger equations for appropriate model potentials and straightforward numerical evaluation of interaction integrals) 
avoids difficulties in using and overstressing perturbation theory. 
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1. Introduction 

It is frequently stated that the single-electron ap- 
proach used in early models, such as the flee electron 
(FE) model and its refinements, fails in describing 
spectra of rr-electron systems since it does not consider 
correlation effects [1]. It should be emphasized that 
the FE model takes care of interdependence of electron 
motion, but in a way that is different to conventional 
models. The antisymmetry condition of the total elec- 
tronic wave function is neglected in treating electronic 
correlation [2]. This simplification leads to a description 
which is sufficiently accurate for practical purposes. By 
avoiding adjustable parameters the model is physically 
transparent and useful in interpreting experimental data. 
We demonstrate in some examples how electronic cor- 
relation is considered and how the results compare 
with experimental data. 

2. The ~--electron systems in their ground state 

In single-electron models the many-body 7r-electron 
Hamiltonian is simplified to a Hamiltonian of inde- 

pendent electrons moving in orbitals to be described 
as solutions of the 3D Schr6dinger equation of an 
electron in a potential V(x,y,z) associated with the 
lattice sites. These orbitals have nodes in the layer 
plane (orthogonality with the ~r-electrons). V(x,y,z) is 
constructed from atomic contributions [3,4]. With the 
particular postulates defining V(x,y,z) the correlation 
of electrons in the ground state is indirectly considered: 
it is assumed that V(x,y,z) is the sum of the Slater 
potentials of the two adjacent charged lattice sites. The 
contributions of all other sites are neglected: their 
charges are considered to be shielded by the residual 
7r-electrons while next-neighbour sites are unshielded. 
In this way it takes care of the interdependence of the 
electron under  consideration with all other  electrons. 
The motion of this electron is considered to be correlated 
with the motions of the other  electrons. 

The Schr6dinger equations for such potentials V(x,y,z) 
have been solved in some typical cases [3,4]. It was 
shown that a considerable simplification in the shape 
of this potential still leads to a reasonable description 
of unbranched 7r-electron systems. The wave functions 
can be written as the product of a function ~v(s) of 
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the coordinate s along the zigzag line connecting the 
atoms in the chain and a function of the coordinates 
perpendicular to the chain which is identical for all 
solutions of physical interest. The functions ~ ( s )  are 
solutions of the 1D Schr6dinger equation in the potential 
V(s) where V(s) is the average of V(x,y,z) taken over 
the coordinates perpendicular to s. V(s) again has been 
systematically simplified in order to investigate what is 
crucial to describe the relevant properties of ~--electrons 
[3,4]. In the case of a chain with bonds fixed to equal 
bond lengths, the most radical simplification, 
V(s) = constant along the chain, still leads to a reasonable 
description of the wave functions of an electron in the 
potential V(x,y,z) if the electron wave is assumed to 
extend by about one bond length beyond the centres 
of the sites at the chain ends (length L = a  ( Z + I ) ,  
bond length a = 1.40 /~, number of sites Z). In this 
case ~ ( s )  is simply a sine function: 

1/2 

~ ( s )  = sin ~-~, v v= 1, 2, 3 . . .  (1) 

As shown below this simplification is appropriate in 
the case of a cyanine dye with resonating structures: 

I Q 

1 

where L = 2 a n .  The N = 2 n  rr-electrons occupy the 
N/2 = n orbitals of lowest energy. 

This simple model [5] (the FE model) can easily be 
refined by solving the Schr6dinger equation for the 
given potential V(s) which has troughs at each atom 
in the chain, but this does not change the wave functions 
essentially [6]. The troughs can easily be taken into 
account to check this statement. However, in the case 
of unequal bond lengths a refinement is important in 
describing orbital wave functions and energies [3,4,6]. 
V(s) is lower in short bonds because the adjacent nuclei, 
on average, are closer to the electron; the Coulomb 
attraction is larger. We assume, for simplicity, that the 
potential is constant along a given bond, its value being 
given by the value of V(s) in the middle of the bond. 
Numerical evaluation gives the following relation be- 
tween potential Vz in bond i and bond length di [7]: 

This model, the step-potential model [6], is the 
logically simplest extension of the FE model. It describes 
this generalized situation sufficiently accurately for the 
present purposes, and it can easily be refined if desired 
for its justification. The exact wave functions for a 
stepwise constant potential are easily obtained by nu- 
merical evaluation. 

The step-potential model allows us, in an easy way, 
to calculate the bond lengths in ~--electron systems. 
Bond lengths and ~r-electron density in a bond are 
related: the ~--electron cloud attracts the nuclei. Thus, 
assuming first a ~r-bonded molecular skeleton with 
uniform bond length a, the skeleton is elastically de- 
formed in the field of the 7r-electron cloud and the 
cloud is deformed in the changed potential. The process 
is repeated until self-consistency between bond length 
and 7r-electron density is reached in each bond. This 
consideration leads to bond alternation in polyenes: 

2 

(di = 1.34 and 1.46/~ for a double bond and a single 
bond, respectively), while the bond lengths in a cyanine 
dye are essentially equal. Assuming equal bond lengths 
in polyenes when starting the search for self-consistency, 
the total 7r-electron density is accumulated in bonds 
1-2, 3-4 . . . . . .  causing an instability leading to bond 
alternation. In cyanine dyes, however, the density ac- 
cumulations are at atoms 1, 3, 5, ..., and not in bonds 
(Fig. 1). The step-potential model leads to equal bond 
lengths in benzene and Hiickel annulenes up to the 
14-annulene and bond alternation in all other annulenes 
and to the expectation that cyanines, with increasing 
chain length, change from equal bond lengths to al- 
ternating bonds and a soliton-like region of equal bonds 
in their centre [6]. 

Extensions of the model are required for considering 
heteroatoms included in the 7r-electron system. By 
adding a potential trough at the site of the heteroatom 
it takes care of the difference in electronegativity be- 

--~s 
1 2 3 4 5 6 7 

--)s 
2 3 4  5 7 8  

Fig. 1. Cyanines (a) and polyenes (b) with n = 4 in the step-potential 
model. Charge density maxima at atoms 1, 3, 5, 7 (cyanines), at 
bonds 1-2, 3 4 ,  5-6, 7-8 (polyenes). 
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tween the heteroatom and carbon. The trough has width 

0.3 /~ and depth - 1 2  eV for Hz~I- or H 2 ~ = ,  - 7 . 8  

eV for -1~=, - 2 0  eV for -C)-_ and -15 .6  eV for \ O -  / - 

or e [_O_. These numbers were obtained by modelling 

the troughs using Slater atomic orbitals [8,9]. 
Branched rr-electron systems require another exten- 

sion. We consider three branches 1, 2 and 3 that meet 
at a branching point P. The three parts of the wave 
function ~ ( s l ) ,  qt~(s2) and gr~(s3) must fulfil conditions 
that take care of the continuity requirement at this 
point. By setting at point P (defining sl, s2, s3 to be 
zero at P): 

q' (sl) = 

d0~(sl) d gtv(s2) d gt~(s3) 
- -  + - -  + - -  - o  ( 3 )  

HS 1 HS 2 d s  3 

This leads to a reasonable description of branched 7r- 
electron systems [10]. A recent application is the C6o 
where the bonds in the branched system are found to 
be alternant [11]. Calculated bond lengths are in agree- 
ment with experimental data in many cases of very 
differently branched systems such as aromatic hydro- 
carbons [12]. 

In polyenes, by their bond alternation, the situation 
is crucially different, since the electron, in essence, has 
to be removed from the double bonds (low potential) 
and brought to the single bonds, i.e. the excitation 
energy is increased due to bond alternation. The result 
of the numerical calculation using the step potential 
or more sophisticated potentials can be expressed by 
the equation [13]: 

(1) 
ALE- 8mL2 ( 2 n + l ) + V o  1 -  ~nn (5) 

with Vo = 2.0 eV. The observed absorption of polyenes 
is well represented by this equation. 

In discussing the absorption of the more complex ~-- 
electron systems it is advisable to begin with the most 
simple model and to refine the approach gradually. In 
this way the nature of a given effect can be elucidated 
by investigating what is crucial and what is unimportant 
for it. This is in contrast to the conventional approach 
as shown in a recent example [14]. 

R 

H 3 C / ~  ~CH 3 
R=phenyl 

3. Excitation of  or-electron systems in cases  where 
correlat ion effects are smal l  

Cyanine dyes and polyenes are prototypes where the 
strong absorption band, its position and its strength 
are almost unchanged by correlation effects beyond the 
effect of electronic interdependence of which V(x,y,z) 
takes care. This approximation can be checked by 
comparison with a refined treatment considering cor- 
relation according to Section 4. 

Typical organic dyes can be viewed as systems with 
uniform bond lengths. This follows from considerations 
according to Section 2. Thus the FE approach is rea- 
sonable. The excitation energy of the strong absorption 
band of a cyanine dye (transition from the highest 
occupied free electron orbital u=n  to u = n + l )  is [5] 

h 2 

b E -  8mLZ (2n + 1) (4) 

where h is Planck's constant and m is the mass of the 
electron. The light absorption of cyanine dyes is well 
described by this equation [5,12]. The effect of the 
potential troughs of the N atoms at the chain ends is 
neglected since both orbitals, u = n  and u=n + 1, have 
antinodes at these troughs. As a consequence their 
energy levels are lowered by the same amount. 

R 

4 

Dye 3 has been synthesized because a conventional 
calculation considering the configurational interaction 
of the 50 energetically lowest singly excited states, using 
a number of experienced adjusted parameters, leads 
to a prediction which was very surprising to the authors, 
that dye 3 should absorb at longer wavelengths than 
dye 4 with the more extended ~--electron system. Indeed, 
the absorption maximum of dye 3 is observed at 630 
nm; that of dye 4 at 554 nm. Is the effect a result of 
a complex interaction of configurations? Is the so- 
phistication of the conventional treatment essential for 
understanding the effect or obscuring the reason of 
the unexpected shift? 

We first discuss dyes of the kind of dye 4. 

(H3C)2 N CH3) 2 

5 
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When proceeding from the cyanine 1 with n = 6 to the 
corresponding branched system (dye 5) the observed 
position of the absorption band is practically unchanged 
(it changes from 625 to 603 nm). Therefore, we first 
neglect this branching in considering dye 4 and treat 
this dye as if it is only branched by the O atom [15]: 

(H3C)2N ~ ~  N~{CH a) :, 
The FE model of this system predicts a transition 

from the highest occupied orbital la> to the lowest 
unoccupied orbital Ib) at 393 nm. Orbital la> has a 
node of the wave function at the O atom and Ib> has 
an antinode. Therefore, if we consider the O atom as 
a potential trough, la> is practically unaffected since 
this orbital has no charge accumulation at the O. In 
contrast, the charge of Ib) is accumulated at the O 
atom, the level is lowered. The nitrogens at the ends, 
similar to the cyanines (dye 1), have the same effect 
on the energy levels of la) and lb> and can be neglected 
for the present purpose. The transition energy is lowered 
by the potential trough attributed to O, the predicted 
absorption maximum is shifted to 558 nm [15]. This is 
in good agreement with the measured value 550 nm. 
If the - O -  atom is replaced for - N -  the shift should 
be less since N is less electronegative, and the potential 
trough shallower. The predicted absorption maximum 
at 475 nm [15] agrees well with the experimental value 
491 nm of dye 6 with X=NCH3 and Y = C H .  

_ ~-'-.® N (CH 3) 2 (H 3C)2 N X 

6 

If, in addition, the C atom in position Y is replaced 
by N, a further shift to smaller excitation energy is 
expected since [a) has a node and tb) an antinode also 
at this position. The predicted absorption maxima (at 
610 nm for X=NCH3 and Y = N ,  and at 758 nm for 
X = O  and Y = N )  are in reasonable agreement with 
experiment (565 and 648 nm, respectively) [15]. The 
refined approach including the additional branching 
leads essentially to the same results [16]. 

In the case of dye 3 the corresponding FE model 
(branching type of anthracene) predicts an absorption 
maximum for the transition from the highest occupied 
orbital ]a) to the lowest unoccupied orbital I b) at 961 
nm [17]. In contrast to the case of dye 4 orbital ]a) 
has an antinode and orbital I b) a node at the position 
of the O atom. Therefore, the transition energy is 
expected to increase by about the same amount as it 
is decreased in the case of dye 4. 

Using the step-potential model taking care of all 
heteroatoms (potential troughs according to Section 2) 
and all branchings, the results in Table 1 and Fig. 2 
are obtained. Good agreement with the measured values 
is obtained in all cases. Replacing R=pheny l  in dye 
3 by an electron-attracting group, the potential trough 
at the adjacent site should increase the excitation energy 
(antinode of HOMO (highest occupied molecular or- 
bital) at the site) in contrast to dye 6 (antinode of 
LUMO (lowest unoccupied molecular orbital) at the 
corresponding site). This is indeed the case: dye 3 with 
R = 4 - C F 3 - C 6 H  4 has its absorption maximum at 614 nm 
[141. 

Table 1 
Absorption maximum (in nm) of some dyes with branched ~-electron 
systems 

Dye 3 Dye 6 

X = O X = N C H 3  X = O X = NCH3 
Y = C H  Y = C H  Y = N  Y = N  

Theory 636 560 513 675 604 
Exper iment  630 550 491 648 565 

dye 3 ~. 

N ~ Ib> 

N ~ la> 

d y e  4 

N - "'" 

" ,  , "  I% ] 

S - "" - . . . .  

Fig. 2. Dyes 3 and 4. Wave functions la) and Ib) in H O M O  and 
LUMO.  Potential t roughs representing N and O atoms: width 0.3 
.~, depth - 1 2  eV (N), - 2 0  eV (O), (see Section 2). 
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The intensities of the absorption bands are deter- 
mined by the transition moment (x is the coordinate 
in the direction of the long axis of the chromophore; 
e is the elementary charge): 

/Xx = <alexlb) (6) 

The oscillator strength of the transition is (if the 
transition moment is in the direction of the x-axis, and 
it is taken into account that two electrons are in the 
highest occupied state) [18] 

2 8 '2m 
f = 3  eZh 2 AEIx2 (7) 

It is seen from the wave functions la> and Ib) that 
/Zx is large for the dyes of the kind of dye 4 and small 
for dye 3 (/x, is zero in the FE case: wave function 
la) symmetric, Ib) anti-symmetric to both axes); it 
becomes different from zero when introducing the 
potential troughs of the heteroatoms causing a defor- 
mation of the wave functions (Fig. 2) and leading to 
the oscillator strength 0.26 for dye 3 as compared with 
1.24 for dye 4; ratio 4.8). Indeed, the extinction coef- 
ficient is 4.4 times larger for dye 4 than for dye 3 
(oscillator strengths 0.9 and 0.2, respectively). The 
sophisticated treatment mentioned above predicts a 
factor of 16 [14]. Replacing R = p h e n y l  in dye 3 for R =  
4-CF3-C6H4 should counteract the above effect on the 
wave functions and lead to a smaller oscillator strength, 
and this is indeed observed [14]. In conclusion, the 
absorption of dye 3 is well predicted by the step- 
potential model, showing that the effect is not due to 
a complex interaction of rr-electrons requiring a so- 
phisticated approach. The example demonstrates the 
merits of simple modelling in elucidating rr-electron 
systems. 

4. Excitation of ¢~-electron systems in cases where 
correlation effects are important 

4.1. General considerations 

We consider the 7r-electron system in the perturbing 
electric field of the light wave and apply the time- 
dependent Schr6dinger equation. The electron under 
consideration is treated as being exposed to the time- 
dependent field of the light and to the time-dependent 
field of all other electrons in the system. Thus, the 
essential point in our approach in treating the correlation 
of all electrons in the system is to neglect the requirement 
for antisymmetry of the total wave function. This leads 
to a strong simplification in the formalism, to a de- 
scription which is sufficiently accurate for practical 
purposes, physically transparent and useful. Thus, the 
dogma that the single-electron approach fails in de- 

scribing the spectra of 7r-electron systems cannot be 
sustained. 

We first consider the light absorption of a one-electron 
system, an electron in wave function ]a) (ground state) 
which can be put into the excited state (wave function 
Ib)), excitation energy AE). The system is exposed to 
light for a short time. The probability is determined 
to find the electron, after exposure, in the excited state 
]b). The light is considered as an alternating electric 
field acting on the molecule. According to the theory 
of Dirac the interaction is strongest if the frequency 
of the light v is given by AE=hu.  The oscillator strength 
of the transition is given by Eq. (7) if the x-axis is in 
the direction of the transition moment. 

Now we consider the light absorption of a system 
of many electrons described by the wave functions of 
an electron in the potential V(x,y,z). Electron i is 
assumed to be in orbital [ai); it can be excited (wave 
function Ibi), excitation energy AEi). The system in the 
ground state is exposed to the perturbing field of light. 
According to the time-dependent Schr6dinger equation, 
the wave function of electron i becomes a time=de- 
pendent linear combination of ]ai) and Ib/) depending 
on the perturbing field of the light and on the fields 
of the time-dependent charge distributions of all other 
electrons. Each electron affects all the others, and again 
we ask for the probability, after light exposure, to find 
electron i in the excited state Ibi). Then, by varying 
the frequency of the light, the positions and the oscillator 
strengths of the absorption bands attributed to each 
electron are obtained. For the present purpose it is 
sufficient to restrict ourselves to just two interacting 
electrons 1 and 2. Then, the positions (AE 1 . . . .  and 
&g2 ..... ) and oscillator strengths (fl ..... and f2 ..... ) are 
given by the relations [2]: 

~ 1  .. . . .  = [A - B ( 1  + Tj2)I/211,2 (8)  

/~KE2 .. . . .  = [A + B ( 1  + '}72)1/211,2 (9) 

2~  = (~kt~2) 2 -t- (~kE1) 2 (10)  

2 8  = (~kE2) 2 -  (/~kE1) 2 (11)  

4 
= ~ (~kEl/~kE2)l/2j (12) 

J =  (al (1)bl(1)~g(1,2) la2(2)b2(2) ) (13) 

fl ..... = [ C ( f l / 2 )  '/2 -DOe2~2)1/2] 2 (14) 

f2 . . . . .  = [C0Cl/2) 1/2 +D0C2/2)1/212 (15)  

1 ]1,2 
C =  1 +  (1_1_ ~2)1/21 (16)  

1/2 
1 D=[1 (1 q_~2)1/2 ] (17) 

where g(1,2) is the Coulomb repulsion energy of the 
two electrons. 
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These equations are formally identical with the equa- 
tions for coupled classical oscillators, thus we call J 
the coupling term. The integral is identical with the 
essential matrix element in conventional treatments 
which takes care of the requirement for antisymmetry 
of the total wave function. The crucial question in 
treating correlation effects in practical cases is how to 
evaluate this integral J. 

4.Z Evaluation of J in the present model and in 
conventional theories 

We ask for the Coulomb repulsion energy g(1,2) 
between electrons 1 and 2 with coordinates 81 and $2, 
averaged over the coordinates perpendicular to s. The 
repulsion energy is largest for sl ~--s 2. In this case the 
electrons are roughly at an average distance equal to 
the distance d between the centres of the two lobes 
of a Pz orbital (d=  1.2 /~.). In this case the shielding 
by o-electrons is considered to be negligible, the average 
repulsion energy g(1,2)=e2/d=12 eV in accord with 
the conventional approach [19]. The repulsion decreases 
with the distance R between coordinates sl and s2. If 
R is sufficiently large (larger than about a/2, which 
means that the distance between the two electrons is 
larger than about a) the shielding effect by the po- 
larization of the tr-electrons is important. We consider 
this effect by assuming that the tr-electrons are polarized 
like a medium of the dielectric constant • of a saturated 
hydrocarbon (•=2.5).  This is expressed by the simple 
equation: 

e 2 f • = l  for R<a/2 
g(1,2)= •(R2-l-d2)  1/2 i•=2"5 for R>a/2 (18) 

(for large values of R, (R2+dZ) 1/z is practically equal 
to R). With this rough but reasonable estimate, the 
integral J can be easily evaluated if the 1D wave functions 
are given by the FE model (example in Section 4.3) 
or by the step-potential model (examples in Section 
4.4). The result is compiled in Table 2 for the cases 
in Sections 4.3 and 4.4 (column 2). In columns 3, 4 

Table 2 
Porphyrin and polyenes. Coupling integral J given by Eq. (13) and 
[at), [bt), la2), Ib2) given by Eqs. (23)-(26) (porphyrin) and 
]a,) = In - 1), Ib,) = In + 1), [a2) = In), ]b2) = [n + 2) (polyenes). Con- 
tributions to J for R < a/2, a /2  < R < a, R > a in present  model (columns 
2-5) and integral J in LCAO approximation neglecting X and W 
(column 6) 

J JR<~t2 J~/2<n<~ JR>. JLCAO 
(eV) (eV) (eV) (eV) 

0.41 0.17 0.23 0.01 0.116V~ Porphyrin 
Polyene 
n = 2  
n = 4  
n = 6  

1.41 1.85 - 0 . 0 2  --0.41 0 .2U+ 0.1Vt 
0.79 0.87 0.02 -0 .11  0.063U+ 0.05V~ 
0.58 0.58 0.01 -0 .01  0.042U+ 0.0561/~ 

ad 5 are listed the contributions to J for R < (a/2), (a / 
2) <R <a;  R>a. In the case of the porphyrin (Section 
4.3) the contribution for R < (a/2) is smaller than the 
contribution for a/2 <R < a because one or other wave 
function has a node in each atom. In contrast, in the 
polyenes (Section 4.4), J is governed by the contribution 
for R < (a/2) because the large Coulomb repulsion at 
small distance is determining the value. In the con- 
ventional models [19] the orbital wave functions, [a~), 
Ibm>, la2) ,  Ib2), are described as superpositions £ck~bk 
of atomic orbitals thk (coefficients ck). Then J is evaluated 
by restricting to nearest-neighbour interaction terms: 

u =  

v1 = < 4, Z(r)[gl6 , + , ( r ' )>  

2 W =  + + l(r  t)> 

X =  < + 

(19) 

(20) 

(21) 

(22) 

where g=eZ/[r-r'[ and r and r '  are the coordinates of 
the two electrons. X and W are usually considered as 
negligible; U and V1 as adjustable parameters. U values 
between 5 and 11 eV were recommended [19]. V1 values 
between 1 and 9 eV were suggested, and values between 
2.1 and 3.8 eV particularly recommended. In a frequently 
used approximation (Hubbard model [20]) a dramatic 
simplification is made: the restriction to the repulsion 
term U. 

Are these simplifications reasonable? Are the adjusted 
values of U and 1/1 reasonable in the present view? Is 
the use of V1 values that differ by an order of magnitude 
physically plausible? We have studied this problem in 
the examples of Sections 4.3 and 4.4 by calculating the 
coefficients c, of the Hiickel molecular orbitals and 
evaluating J for these examples, neglecting W and X 
(Table 2, column 6). 

In the porphyrin case (Section 4.3) the U term is 
missing (since one factor in the product of the coef- 
ficients c~ is always zero: at each site one of the four 
wave functions has a node). This is the only term 
considered in the Hubbard model in which correlation 
is assumed to be restricted to the case where both 
electrons are at the same site. However, there is a very 
strong correlation effect in the spectrum of porphyrin 
(see Section 4.3), showing that the Hubbard approx- 
imation is inappropriate in this case. On the other 
hand, when evaluating J using the Ohno equation [21] 
(which is identical with Eq. (18), but • is set to unity 
in the whole range, i.e., the it-electron polarization in 
the field of the rr-electrons is not taken into account) 
the correlation should be overestimated. 

The example of porphyrin then is a good case to 
estimate the value of 1/1 by comparison with the present 
approach: neglecting Wand comparing the value 0.1161/1 
with the value 0.41 eV (Table 2 and Section 4.3), gives 
Va = 3.5 eV. This is within the range of the particularly 
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recommended adjusted V~ values (2.1 to 3.8 eV). The 
comparison shows that these values are physically rea- 
sonable, but this is not the case for 1 and 9 eV. 

The U term can be evaluated from the polyene data. 
We compare the contribution for R<a (Table 1, sum 
of columns 3 and 4) with the sum of the U and the 
1/1 term (column 6) and find U for a given Vi =3.5 
eV. The values U=7 .4  eV (n=2) ,  U=11.3 eV (n=4) ,  
and U=9.3  eV (n =6)  are at the upper  limit of the 
recommended adjusted values. It should be noted 
that the contribution to J for larger distances (usually 
neglected in LCAO (linear combinations of atomic 
orbital) treatments) (R > a, column 5) are considerable 
in polyenes with n = 2 to 4. 

The directness and easiness in evaluating J in the 
FE approach and beyond, avoiding separation into 
atomic orbital contribution and avoiding restriction to 
nearest neighbours, should be emphasized. 

4.3. Porphyrin 

Two bands are observed in the visible, a band at 
550 nm (/'1=0.14) and a band at 423 nm (:2=2.80). 
The strong difference in intensity of the two bands 
cannot be explained without taking correlation effects 
into account. 

We consider the molecule as a system of 18 ~-- 
electrons moving along a ring of 16 sites [22] (thick 
line in Fig. 3, each bond of  length a = 1.4/~, coordinate 
s along the bonds with s = 0  at site 16) and eight 
separated rr-electrons (indicated in the figure by double 
bonds). In a refined consideration [23] these electrons 

must be included and the molecule has to be considered 
as a branched 26 7r-electron system. We neglect the 
branching in order  to focus on the essential point in 
the present context. 

The HOMOs: 

1 ( 4 , n ' )  
lal) = (8a)1/2 sin ~a s (23) 

1 
la2) = c o s  s (24)  

are non-degenerate because [a2) has antinodes (max- 
imum density) at the positions of the N atoms, while 
lad has nodes (zero density). Thus, treating N atoms 
as perturbations, la~) is at a lower level than [a~). 

In contrast, the LUMOs: 

1 
I b d -  ( S a ) :  sin ~ s (25) 

Ib2)-  ( 8 a ) ~  cos ~ s (26) 

are degenerate,  the overall density at the N atoms is 
the same. The first band in the FE description cor- 
responds to transitions ]al) to ]bl) (x-band with transition 
moment  in the x-direction) and la,) to Ib2) (y-band); 
the second band corresponds to transitions ]a2) to [bl) 
(y-band) and [a2) to [b2) (x-band). The following values 
are obtained for the corresponding excitation energies 
and oscillator strengths: Z~1=2.30 eV (540 nm); 
fa = 1.76; AE2 = 3.18 eV (390 nm);f2 = 2.64. The coupling 
treatment can be restricted to the y-bands, since there 

6 5 

_ N  

c s = -0.327 
c 6= +0.250 / c4= 0 

X'--- c7 = +0-135 / 

( \C8=-0 .354  ~ X [b2) 

C 5 = -0.135 
c 6 = -0.250 / c4 = +0.354 

 -c7=+0=7 

AE1 
. x  

c6:-0.3s4 / c4=+0.3s4 "1 - - , , - -  I 

e" ] \. . 
~ c7=' / / la2) -oZ--o - J X :o % %:.: 
~ , 0 , ~  0 anti-nodes 

Fig. 3. Porphyrin (metal complex). Molecular lattice in xy-plane. 18 ~--electrons moving along a ring (thick line) and eight separated "rr- 
electrons indicated by double bonds. Energy levels of HOMOs (]a~), la2)) and LUMOs (Ibl), [bz)) in the FE model treating N atoms as a 
perturbation. Wave functions la~(s)), to ]bz(s)) given by Eqs. (23) to (26): their anti-nodes are indicated by filled circles. Numerical values 
at atoms represent LCAO coefficients c,. 
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is no coupling between x- and y-bands, and the x-bands 
couple in the same way as y-bands. With Eqs. (8) to 
(17) and J=0 .41  eV (Table 2), we obtain the values: 
~ E 1  . . . . .  = 1.63 eV (763 nm); fi ..... =0.04; ZkE2 ..... =3.57 
eV (347 nm);f2 . . . . .  = 4.36. A refined treatment including 
atomic potential troughs gives J = 0.36 eV and this leads 
to the slightly different values: zkE~ . . . .  = 1.75 eV (707 
nm);fl  ..... = 0.13; ~ k E  2 . . . . .  = 3.50 eV (354 nm);f2 ..... = 4.3. 
Thus, the coupling effect on the intensities of the 
absorption bands is well represented by the model, but 
the separation of the two bands is overestimated and 
this is due to the neglect of branching, as seen by 
refining the treatment [23]. 

4.4. Polyenes 

The fact that the 2lAg state of polyenes is below 
the laBu state has led to the so-called dogma that the 
single-electron approach used in early models fails in 
describing the spectra of ~--electron systems. We have 
shown in [7] that the coupling approach (Eqs. (8) to 
(17)) leads to a simple explanation of this fact. We 
used a strongly simplified perturbation treatment fo- 
cusing on the essence. Here we consider a more rigid 
approach. The Schr6dinger equation for the step-po- 

tential model (Section 2) is solved numerically: the 
transitions from the ground state of a polyene with n 
double bonds into the laBu state (transition from orbital 
I n) to orbital I n + l ) ,  transition energy ~ E 1 )  and into 
the 2~Ag state (coupling between transitions from In - 1) 
to I n + i )  and In) to In+2) ,  transition energies zXE2 
and zkE3). The coupling between the two electrons 
engaged in each of the three transitions is first con- 
sidered: transitions into singlets ( ~ ) ,  zSag(2 ~), &E(3 a)) 
and triplets (zXE~ 3), ~Ug(z 3), ZkE(33)), where e.g., 

2uglY) = (k~E 2 + 2AE~J) ~]2 

~7{3) = (~E 2 - 2kagaJ) ~/2 

(27) 

(28) 

J is given by Eq. (13) with ]al)=[n) ,  Ib~)=ln+l ) ,  
[a2) = In), [b2) =In + 1). 

Then, the transitions AE(2 a) and AE(3 ~) are coupled 
giving AFo) and At-(1) (coupling integral J given 2 , c o r r  ~ 3 , c o r r  

by Eq. (13)wi th  l a ~ ) = [ n - 1 ) ,  [b~ )=[n+ l ) ,  la=>=ln>, 
Ib2) = In + 2 ) ) .  The coupling integrals are evaluated by 
numerical integration using Eq. (18) and the numerically 
obtained wave functions In-  1), In), In + 1), In + 2). The 
approach is refined by additionally introducing a po- 

T a b l e  3 

P o l y e n e s  w i t h  n d o u b l e  b o n d s .  T r a n s i t i o n  e n e r g i e s  a n d  c o u p l i n g  e l e m e n t s  ( i n  e V )  

n 2 3 4 5 6 

A E  1 7 . 6 5  " 5 . 3 7  " 4 . 3 6  " 3 . 7 8  " 3 . 4 0  a 

5 . 2 5  b 4 . 3 4  b 3 . 8 2  b 3 . 5 0  b 3 . 2 9  b 

4 . 3 8  ¢ 3 . 5 1  c 3 . 1 0  c 2 . 7 0  c 2 . 4 9  c 

A E  2 9 . 5 7  ~ 6 . 3 8  ~ 4 . 7 9  " 3 . 8 3  " 3 . 1 9  " 

6 . 8 2  b 5 . 7 8  b 5 . 0 6  U 4 . 5 5  b 4 . 1 7  b 

6 . 0  c 4 . 9 5  ¢ 4 . 2 4  ¢ 3 . 7 4  c 3 . 3 8  ¢ 

A E  3 1 6 . 0  " 1 0 . 2  ~ 7 . 6 5  " 6 . 2 6  " 5 . 3 9  " 

9 . 9 8  b 7 . 2 0  b 5 . 8 0  b 4 . 9 7  b 4 . 4 3  b 

8 . 4 8  ¢ 6 . 1 4  c 4 . 8 9  c 4 . 1 3  ¢ 3 . 6 2  c 

A E t  ~) 5 . 9 2  c 4 . 6 4  ~ 3 . 9 1  c 3 . 4 4  ¢ 3 . 1 1  c 

5 . 9 1  d 4 . 9 3  d 4 . 4 0  d 4 . 0 2  d 3 . 6 5  d 

~ E I  3) 1 . 8 3  c 1 . 7 5  c 1 . 6 9  ¢ 1 . 6 5  ~ 1 . 6 4  ~ 

3 . 2 2  d 2 . 6  d 2 .1  J 1 . 9  d -- J 

,~E~  t) 7 . 5 0  c 6 . 0 2  c 5 . 1 0  c 4 . 4 6  c 4 . 0 0  ~ 

,C~v~t) 9 . 7 7  c 7 . 0 8  c 5 . 6 6  c 4 . 7 8  c 4 . 1 8  c 

I)  c c c 2xE~, . . . .  5 . 5 9  ¢ 4 . 5 4  3 . 7 8  3 . 2 8  2 . 9 2  ~ 

_ d _ d 3 . 7 9  d 3 . 4 8  d 2 . 9 1  d 

1) c ¢ zkE~ . . . .  1 1 . 0  ¢ 8 . 1  6 . 6  5 . 7  ¢ 5 . 0  ¢ 

_ d  _ d  _ d  5 . 4  d 5 . 1 2  d 

J(In -- 1 )  ~ In + 1 ) ;  I n )  - - ,  In + 2 ) )  1 . 4 1  c 0 . 9 7  ¢ 0 . 7 9  ~ 0 . 6 7  ~ 0 . 5 8  ~ 

J ( In )  ~ I n + 1 ) ;  In ~ In + 1 ) )  1 . 8 1  ~ 1 . 3 2  ¢ 1 . 0 3  ¢ 0 . 8 4  c 0 . 7 0  c 

J( ln  - 1 )  ~ [n + 1 ) ;  In - -  1 )  ---, In + 1 ) )  1 . 6 9  ~ 1 . 1 8  ¢ 0 . 9 4  ~ 0 . 7 9  ~ 0 . 6 8  ¢ 

J ( l n )  ~ [ n + 2 ) ;  I n )  --+ I n + 2 ) )  1 . 3 9  ¢ 1 . 0 1  ~ 0 . 8 2  ~ 0 . 7 0  ¢ 0 . 6 0  ¢ 

" P e r t u r b a t i o n  t h e o r y  [ 1 ] .  

b S t e p - p o t e n t i a l  m o d e l  ( b o n d  a l t e r n a t i o n ) ;  n u m e r i c a l  s o l u t i o n  o f  S c h r 6 d i n g e r  e q u a t i o n .  

c S t e p - p o t e n t i a l  m o d e l  ( b o n d  a l t e r n a t i o n ,  a t o m i c  p o t e n t i a l  t r o u g h s ) ;  n u m e r i c a l  s o l u t i o n  o f  S c h r 6 d i n g e r  e q u a t i o n .  

d E x p e r i m e n t  ( s e e  R e f .  [ 1 4 ]  in  [ 7 ] ) .  
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tential trough of width 0.3 ~ and depth 31 eV at each 
atom to take care of the atomic potential lowerings. 
The results are compiled in Table 3 for n = 2 to 6. 

The positions of the 11Bu and 2lAg states are es- 
sentially the same as in [7] 1; the transition energies 
are in accord with experimental data. 

5. Conclusions 

The NFE model allows us to rationalize the spec- 
troscopic properties of ~--electrons. Electron repulsion 
is considered, but the antisymmetry of the total wave 
function, for simplicity, is neglected. In simple cases 
the extra correlation when exciting the molecule can 
be neglected, e.g., in the case of a recently synthesized 
dye, where this very simple model approach leads to 
a better agreement with experimental data than a 
conventional approximation including a great number 
of interacting configurations. This extra correlation is 
important in cases where electrons are engaged in 
transitions with equally oriented transition moments. 
For quantitative treatment an appropriate description 
of electron repulsion is crucial. In the FE model and 
beyond, this is attempted by numerically solving the 
Schr6dinger equation for appropriately constructed 
model potentials and straightforward numerical inte- 
gration in evaluating the coupling integral J. Thus, the 
difficulty is avoided of introducing errors by overstressing 
the perturbation theory and by making simplifying 
assumptions in evaluating J (writing each molecular 
orbital as a linear combination of atomic orbitals and 
making omissions which are not obvious). The free 
electron model and beyond has been recently considered 
as obsolete because it was tailor-made for analogue 
rather than digital computers and is less easy to handle 
than Hiickel-type treatments [24]. However, in the form 
of the step-potential model, it can be easily handled 
with the digital computer and was successfully used to 
treat large 7r-electron systems (non-linear optical prop- 
erties [8], solitons in polyacetylene [6] and their dynamics 
[25] and the bond lengths and the spectroscopy of C60 
[111). 

1 The errors due to the simplifications in [7] are largely compensated.  
The comparison of AEz, ~ z  and AE3, following from perturbation 
theory (Eq. (8) in [7]) with the values obtained by numerically solving 
the Schr6dinger equation, shows that the perturbation theory was 
partially overstressed, particularly for n = 6 where perturbation shifts 
~ z  below zME~z. Discrepancies by overstressing the perturbation theory 
are seen in the present case where the numerical solution of  the 
Schr6dinger equation is simple. It is more hidden in sophisticated 
cases. 
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