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In treating the motion of solitordc exitations in polyacetylene Newton's equation is used to approximate the lattice 

dynamics. The force field is obtained from the deviation of the n-eleetron densities in the bonds from their equilibrium 

densities. The n-electron density distributions are evaluated with the step-potential model. This model of a nearly free 

n-electron coupled to the elastic lattice of o-bonded hydrocarbon ions is the conceptually simplest approach and has no 
free parameters. The electron-phonon coupling constant is scaled to butadiene and benzene. It is shown that a neutral 
kink moves frictionless for velocities up to three times the velocity of sound and shakes off phonons at higher 
velocities. This is in contrast to the results of the SSH-model, where the maximum velocity of the neutral kink is 
expected to be in a considerable range (0.6-4.0 times velocity of sound) depending on adjustable parameters. 

INTRODUCTION 

The problem of transmitting a signal through a 

n-electron system has been widely discussed [1,2]. 
Transport of solitons through a polyene chain within the 
(Su Schrieffer Heeger)-model was subject of a number of 
papers [6-11]. The lattice dynamics is usually treated in 
standard adiabatic approximation using Newton's equation 
of motion. The force required to integrate Newton's 
equation is usually obtained as the negative gradient of a 
potential energy surface. The equation of motion is 
integrated numerically using finite time steps. The result of 
the integration depends on the accuracy and stability of the 
algorithm used [12-16]. We have recently shown, that the 
statics [17] and dynamics [18, 19] of solitonic excitations 
can be treated by a simple step-potential model of a nearly 

free n-electron (N'FE) coupled to the elastic lattice of 

o-bonded hydro-carbon ions leading essentially to the same 
results as the (SSH)-model. However, the (SSH)-model 
calculations yield a maximum speed of the soliton 
depending strongly on adjustable parameters, while in our 
model the result (maximum speed of suliton being three 
times velocity of sound) is given by the strength of the 
electron-phonon coupling. 

It is thus of interest to compare the physics/impli- 
cations of the (SSH-Httckel)-theory and the (NFE)-model 
and to shed the differences in structure of the models. 
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Both models have the same starting point: the many body 

n-electron Hamiltionian simplified to a Hamiltonian for 
independent electrons [20] moving in orbitals to be 
described as solutions of the Schr/Jdinger equation of an 
electron in a potential V(x,y,z) associated with the 
CH + lattice sites. These orbitals have nodes in the layer 

plane (orthogonality with o-electrous). In both approaches 
V(x,y,z) is constructed from atomic contributions. 
The difference between the two approaches is given by the 
strategy of finding approximate solutions of that 
Schr0dinger equation. In the refined free electron model, in 
contrast to the Httckel-LCAO and beyond, the SchrOdinger 
equation for the molecular potential is numericaUy solved to 
obtain the eigen values and the corresponding orthonormal 
wave functions. The potential has been systematically 
simplified to investigate what features of V(x,y,z) are 

crucial to still describe main aspects of n-electron systems 
[21, 22]. In the case of chains with bonds fixed to equal 
bond length the most radical simplification of V(x,y,z) is 
the free electron model (orbitals where the factor depending 
on the coordinates perpendicular to the chain is the same for 

all n-electrons and the factor in the direction of the chain is a 
sine function corresponding to a constant potential). 
The step potential model using bond potentials being lower 
for the shorter bond is the logical extension of the free 
electron model in the ease of chains with bonds fixed to 
unequal bond length. The value V i of the potential step 
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corresponding to bond i is fixed to the averaged Slater 
potential from the two adjacent CH + lattice sites taken in the 
middle of a bond (Fig. 1), i.e. the contribution of all 
CH+-ions besides the next neighbours are neglected. 
The Coulomb charges of these ions are considered to be 

shielded by the residual n-electrons. In contrast, next 
neighbour ions are considered to be unshielded [23]. 

In the step potential model of a hydrocarbon chain of 
M bonds with unknown bond lengths dl,  d2 ..... d M the 

n-electron is considered as an electron in a one dimensional 
potential composed of successive bond potentials 
Vl(dl) ,  V2(d2) ..... VM(dM), each bond potential being 
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constant and of length a=l.40]L This SchrCkiinger equation 
is solved numerically and the wave functions are obtained 
as outlined in [17]. The lowest states are filled with the 

n-electrons present in the system and the n-electron density 

in the middle of each bond Pi(V I, V 2 ..... VM) is obtained. 

The n-electron charge in the bond i attracts the adjacent 

• o-bonded CH+-ions by Coulomb forces and thus reduces 
the bond length d i and the corresponding bond potential 

Vi(di). The compression of bond i counteracts with the 
elastic forces caused by the Coulomb repulsion of the 

adjacent CH+-ions and their attraction by the o-electrons in 
between. This electron-phonon coupling is described within 
the step potential model by using the following relation 

between Pi and V i iterafively: 
~2 

V i =  6 ¢ ( 1 - P i a  ) 2ma2 , c¢=1.95 (1) 

(/12/ 2 m a 2 =  1.944 eV ), where the strength of the 

electron-phonon coupling, a, is scaled to the experimental 
bond lengths of butadiene and benzene. Applying equation 

(1) for each Pi and solving the SchrOdinger equation for the 
new configuration of bond potentials initiates in return a 
cycle of an iteration, which converges to selfconsistency 

between pi and Vi and thus finds the equilibrium density 

(V 1 '~ 2' .... VM) of bond i and all equilibrium bond 

lengths dl, d 2 ..... dM of the relaxed molecular lattice of 

the hydrocarbon chain under consideration. All consequen- 
ces follow unambiguously [ 17]: the absorption spectra and 
bond lengths of polyenes, polymethines and annulenes and 

the solltonic excitations in polyacetylone. The value a=1,95 
in the equation (1) is unambiguously given.[23] A value 

a>2.6 would yield to bond length alternation in benzene. 
Therefore the resulting equal bonds in benzene and the 
transition from equal bonds to alternating bonds in the 
18-annulene is not obvious but an important test for the 
model. This transition is reached within the (SSH)-model, 
s c s r c l ~  for the energy minimum, by parameter fit [24]. 

FORCE FIELD FOR THE DYNAMICS 

Fig.1  The potential of a n-electron along the bond is 
approximated by the sum of atomic contributions from the 

two adjacent CH + lattice sites. The one-dimensional medel 
in the case of butadiene: Slater potential averaged 
perpendicular to the bond, as a function of s and the 

corresponding n-electron charge density dis~bution (right). 
Value V i of the potential step corresponding to bond i of 
length d i is fixed to the averaged Slater potential taken in the 

middle of the bond and the corresponding n-electron charge 
dens/ty distribution (left). 

The dynamics in standard adiabatic approximation 
follows from Newton's equation for every site i :  

d 2 
MCH " ~"~x i ffi F i (2) 

where x i is the coordinate of site i representing a CH + 

group with mass MCH = 23888 m = 2.176 • 10 -26 kg. 
The displacements are constrained to the molecular axis 

a Xi+l - x i  . 
along x and thus di sin ~ ffi ~-, where di - ccs-------~1 is 

the length of bond i (Fig. 2). The a-bonds in the field of 

the n-electron cloud are compressed according to the 
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Fig.2 Zig-zag structure of polyecetylene along s. 
CH groups resumed to the u'ack along x. 

n-electron density in each bond until the equilibrium 
configuration is reached. During dynamics the molecular 
lattice is not relaxed. Thus, in analogy to Hooke's law, the 
strain arising in bond i is proportional to the deviation 

- P~ of the actual n-electron density Pi from the 

equilibrium density ~ i. For small deviations of the actual 

density Pi from its equilibrium it is assumed that the 

equtlibrinmdensity Pi(  Pl, P2, .... P M) is obtainedby 
applying equation (I) for each Pi and solving the 
Schrodinger equation with this configuration of bond 
potentials (i.e. by just one cycle of the iteration described 
above). The force caused by the strain within bond i acts on 
the two adjacent sites i and i+1 and is projected to the x axis 
by the angle ~i. The strain within the two adjacent bonds 

i- 1 and i contributes to the force acting on site i. 

r+ -F + ( a 1. ka (3) 
i - - l - - (  +(~-I- Pi-l)  a COS (~x-1 I 

Newton's equation (2) with the force (3) is approximated 
by a difference equation (Verlet algorithm) and is simplLfied 
to the equation (A7) describing the time evolution of the 
bond potentials. This is outlined in the Appendix. 

The dynamical scaling fact~ k is thus the stiffness of 
the bond deviating from its equilibrium (this equilibrium 
itself depends on the electron-phonon coupling constant 

a=I .95) .  The value k = 11.2eV~ "2 is obtained from 
scaling the time axis: calculating the frequency Vma x of the 
in-phase-streching-mode of the polyene lattice by numerical 
integration of (AT) and compairing it with the experimental 

value Vmax = c" 1400 cm - I  (vibronic structure of the 
absorption band of polyenes). Thus starting with an 
appropriate intitial condition and proceeding equation (AT) 

with time step At = 1.25 • 10 -15 sec the time propagation 
of the non-linear excitation under consideration is obtained. 
The dynamical scaling factor k should not be confused with 

(2# Vmax) 2 MCH 
=31.5 eV]C 2 tbe f ~ e  constsnt K = 4cos 2 cp 

the o-bond compressed by the ~-electrous. The velocity of 

sound along s is v a =1.85- 104m sec -1 . Scaling the time 

axis not to Vma x but to Raman data on benzene with 

K = 4 7 . 5  e V ~  "2 the values Atffil.02 • 10-XSsec, 
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k = ]6 .9eV~ "2, va=2.27" 104m sec -1 are obtained. 

However, since k scales the time axis, the gap (which is 

defined by a )  and thus the course of the dynamics is 
unaffected by this parameter. In contrast, treating the 
electron-phonon coupling within the (SSH)-model 
(parameters K, t o aSS H ), the minimum of the total 

energy is determined. This leads to a serious inherent 

inconsistency: the value 2=0 .2  of the parameter 

~=  n to------ ~ fits the experimental value of the band gap, 

but the value ~=0.08 calculated from the experimental 
values of K and of the bond lengths of graphite and benzene 

(giving aSsH/K) leads to a band gap smaller than the 

experimental value by a factor 1/40. This clear 
disagreement is usually assumed to be an indication of the 
failure of the single-particle picture and thought to be 
removed by explicitly taking electron-electron correlation 
into account [20]. However, there is no such inconsistency 
wimin the (NFE)-mndel [23]. 

DYNAMICS OF THE NEUTRAL KINK 

The time evolution of a neumtl kink embed~ty.J in a ring 
with 139 sites initially at rest with velocity boosts (Fig. 3) 
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Fig .3  Initial condition for dynamics of the kink in Fig.4. 
Above, potential steps of alternating lower (higher) values 
correspond double (single) bonds. Defect located at i=27. 
Below, velocity boost for velocity 71 v a, )7 = 10 obtained 

A 2 v t -  V t-'~" vaAt " - ~  ( P i -  by i i = q Pi+2)" 2ma2 
(since solitons are degenerate if translated by 2a). 
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DYNAMICS OF SOLITONS 
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Fig.4 Dynamics of a neutral kink along a ring of 

139 sites (139 bonds) with an initial velocity v k = I0 v a 

during 1000 time steps of At = 1.25. D -15soc. 

a) Time evolution of the kink velocity v k and kink width l k. 

b) Time evolution of the charge density alternation 

A Pi = ( -1 ) i  ( P i+l -  Pi).  Spot-light every 10At indicated 

by numbers 0-100. Ar = 0 indicated by star. To avoid 
kink-phonon collision, phonons evolving behind the fast 
moving kink are relaxed removing kinetic energy by 

. ~ 2  
vt+Ati = Vti + At2 CO2 zit 2ma 2 within the soliton-free 

region for each time step, until steady state of the moving 
kink is re, ached. During this procedure, where a section of 

the lattice is relaxed, the total energy is not conserved. 

Voi. 87, No. 3 

to 1 k = 6.5 a (Fig. 4a), while the rise of a huge hump 

behind the soliton takes over the excess kinetic energy. 
The hump starts to oscillate and smaller wiggles with 

frequency 0.94 Vmx and wave length 13 a develop 
behind the kink, slowing it down further and increasing its 
width again (Fig. 4b). The vibration is due to the fact that 
the soliton, as it moves over a distance given by its width 
produces a maximum in the alternation and leaves a 
minimum behind. With progressive time evolution the 
amplitude of these wiggles fades away and the soliton 
reaches a constant width of 1 .  = 8.3a and a constant 

velocity of v .  = 3.05 v a without energy dissipation into 
the lattice. Guinea [5] and Bishop et al. [4] obtain within the 
SSH-model v .  values between v . = 0 . 6 v  a and 

v..  = 4.0 v a by using different values of adjustable 

parameters. Waves of wavelength 12 a were also described 

by Guinea [5] for V k = 4 . 3 v a  and V k = 3 . 0 V a .  

Note that the result v .  = 3.05 v a depends on the 

electron-phonon coupling a scaled to experimental 
bond lengths, but not on the dynamical scaling factor k. 

CONCLUSIONS 

The step potential model is the conceptually simplest 

approach to treat the electron-phonon coupling in It-electron 
systems and is the logical extention of the free electron 
model. Scaled to the experimental bond lengths of butadiene 
and benzene the static properties of nonlinear excitations in 
polyacetylene are well described. Based on standard 
adiabatic approximation the extention of the step potential 
model to study the dynamical behaviour of nonlinear 
excitations in polyacetylene is straightforward. The time is 
scaled to the frequency of the in-phase-sffeching-mode of 
the polyene lattice. However, the course of the dynamics 
(i.e. maximum velocity of a neutral kink with regard to 
velocity of sound) is independent on the time scaling factor. 

of v k = 10 v a [25] is investigated (Fig. 4). Immediately 

after the boost the velocity of the kink v k drops down to 

v k = 5 v a as well as its width Ik, from initially Ik = 9 a 
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h - 1.3- 10 +6 m see -1 of 25. With the velocity v F -  4 ma 

a ~-electron at the Fermi surface the ratio v a /v  F = 0.014. 

The localized n-electron corresponding to a kink is fast 
enough to fill the space given by its wave function before 
the defect leaves the region with a velocity of the order 
of v a and the adiabatic approximation is expected to give 
correct results. The validity of the adiabatic approximation 
must be seriously questioned for kink velocities 
of = 10 v a and it surely breaks down for velocities 

approaching v F 

26. To avoid time derivatives of square root terms in going 
from equation (A2) to equation (A5) we use y -- 0 and for 
compensation /5= 19.4 (instead of ~0= 19.9, see [17]). 
With these values the single and double bonds in butadiene 
are evaluated to 1.466 A and 1.329 /~, respectively 
(instead of 1.48 ~k and 1.34 ~) 

APPENDIX 

The dynamics of bond i is given by (A.2) subtracting (2) 
from (A.1) 

d 2 
MCH " " ~ x i +  1 =Fi+ 1 (A.1) 

d 2 
MCH" " ~  (d icos  ~i)  = F i + l - F i  (A.2) 

According to (2) the total momentum is conserved 

d = ~ _  ~i  F i = 0  (A.3) ~" E Pi E Ma-I dxi = 
i i ~ " 

Using force field 0),  equation (A.4) with /~= 19.4 [26] 

equation (A.2) can be written as 

dt 2 (v ic°s  ~ )  

k l -  2( . , ) .  I _4_ 
=M~ I+( R_:-p~_:)acus ~-:I 2m'~ 

(A.4) 

(A.5) 

The ~o i are in the limits of 280 to 32° , thus they are all set 
time and space independent and equation (A.5) 

r-,-,: "i÷,) al 
and Z[ =l -2(  ~ - Pi)a / 

i+ ( & l -  a / 

with oj2_ ~.___.kk 
- M c H  

is simplified to 
d 2 ~t 2 
dt 2 Vi c72 t. (A.6) -- %i 2ma 2 

To integrate equation (A.6) we use its discrete form 

vt+A t = 2V t _ vt_~ t 112 
i i i + (At w) 2 Z~" 2nm 2 (A.7)  

With At m - - 0 . 5  we have chosen a time step 

At-- 1 19.1 1/ma x sufficiently small to reach good accuracy 

and stablility [16]. The conservation of the total energy is 
proved by demonstrating constant velocity of a kink moving 
with low speed, i.e. below its maximum velocity. 


